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After Tsien [I], Hayes @] and Il’iushin [S] had established the analogy between hyper- 

sonic flow past slender bodies,and unsteady flows in a space with one fewer dimensions, 
many researchers sought to establish which steady flow corresponds to the motion of a 

gas produced by an intense explosion. The authors of the earliest studies [4- 81 assumed 
that the gas particles in an explosion of a flat or filament charge move in the same way 

as in flow near a’blunt plate or semi-infinite cylinder at a zero angle of attack relative 
to the free stream. The thickness of the stIeamlined bodies were assumed to be infinites- 
imal; the bluntness of their leading edges was taken to be the direct analog of the action 
of a concentrated force on the ambient medium. The resulting analogy made it possible 

to isolate the most salient common features of the two effects, but suffered from one 
drawback: the density at the plate and cylinder surfaces turned out to equal zero, and 
the entropy to be infinite. 

Cheng [9]. Sychev [lo, ll] and Yakura [12] subsequently developed the notion of a 
high-entropy layer whereby the thickness of streamlined bodies increases to infinity down- 
stream, while the entropy remains finite over the entire contour. They emphasized that 
flow in a high-entropy layer differs from that in the rest of space , and that the use 

of the hypothesis of plane cross sections to calculate this layer entails considerable errors. 
The results of Sychev [lo, 111 and Yakura [la] are thoroughly analyzed below. It is 

shown that these results are obtainable directly from the theory of intense explosions as 
developed by Sedov [13. 141 and Taylor [15]. This possibility means that the analogy 
between unsteady flows and hypersonic flow past slender bodies is valid in the first appro- 
ximation throughout the domain beyond the front of the bow shock wave. This includes 
the domain adjacent to the contour of the body. The contour itself can be determined 

simply by choosing an appropriate value of the entropy at the particle trajectory which 
generates it; the equation of the trajectory can be found by solving the explosion prob- 

lems in Lagrange variables [16]. 

1. We assume that the motion of the gas is axially symmetric. Our principal conclu- 
sions will be equally valid for plane-parallel flows, however. We denote the axes of the 
cylindrical coordinate system by z and F , directing the r-axis along the velocity vec- 

tor of the unperturbed stream. Following [lo-121. we shall consider the inverse problem, 
i.e. we shall prescribe the form of the shock wave r = F, (z), and determine the con- 
tour of the streamlined body in the course of solution. Using the explosion analogy to 
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calculate the hypersonic flow, we set 

where C is an arbitrary constant. 
Fa=cl/; (1.1) 

The principal contribution made by Sychev [lo] was to determine the shape of the 
body far away from the point of intersection of the central streamline and the shock front. 

His expression for the contour F = rb((z) of the body is 

Here x is the Poisson adiabatic exponent, the function His equal to the ratio of the 
pressure in the perturbed flow domain to the pressure beyond the shock wave, and the 

quantity 
(I.31 

Formula (1.2) is not valid for small t , since the perturbations of the velocity field 
turn out to be finite and cannot be described by a theory based on the unsteady flow 
analogy. Conversely, this formula becomes more precise the larger the t,-coordinate . 
It is therefore expedient to simplify it by taking the limit and letting x --t cu. 

To do this we make use of the integration variable v and the self-similar variable I 
introduced by Sedov [16]. Denoting the ratio of the velocity in the perturbed flow zone 

to the velocity beyond the shock front by f , we obtain [lOI 
A 

q=exp 2 
( S( 

h- & 1)-l dhj 

1 

Let us also introduce the function g defined as the ratio of the density at an arbitrary 
point lying between the shock wave and the body to the density due to intense shock 
compression of the gas. The functions f and g and their first derivatives are related by 
the expression 

; ;z +(f-~hj-l[(~_-~+(-+~j]=O -- 

which appears in monograph [171. This relation is readily transformable into 

h - jj] = 2 (A - & f)-l 

from which we 
2 

11 = --+g x.- 
(1.4) 

By definition, H (q) = h (1). Making use of the Eq. (1.4). we can rewrite formula 

(1.3) as 

The expression in square brackets in the right side of the latter equation can be sim- 
plified with the aid of the adiabatic criterion [17] 

The function C now assumes the final form 

i 

C” h -l/X 

G= gx+4y 
j 

Converting from the variable 9 to the self-similar variable h in Eq. (1.2) for the 
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contour of the required body, we obtain 

r~=C~‘“{l+~rC(~,L)[*-~~c(“~h(h)]-’hbg(h)dh}”’ (1.6) 

1 

The function G + g-l as x -+ 00 for finite values of h . As h 4 0 the ratio g + 0 

and h 4 h,, # 0 . This follows from Sedov’s asymptotic formulas [16]. Hence, as h -+ 0 

and x -+ 00, the second of the two terms in parentheses in the right side of Eq. (1. 5) may 
turn out to be larger than the first, and for h = 0 we have 

This implies that the ratio C / x -P 0 as x + 00 for all values of A. Making use of this 

fact, we can write the expansion 
XC2 

=I +,(,+I)2 z ‘Gh+... (1.7) 

In order to determine the asymptotic behavior of the contour generatrix of the requi- 

red body for large values of the x-coordinate, we must use only the first term of series 
(1.7) in computing the integral in the right side of (1.6). It is not difficult to show that 

the remaining terms of this series make a contribution of lower order in x to this inte- 

gral. This means that in the first apprfximation 

Expansion of the integrand of the above expression in a series is no longer possible for 
large I. We therefore have 

-lix 

0 L 

where the parameter a must be chosen in such a way that, on the one hand, 

Ca h(e) 
g”W>~--y- (1.9) 

and on the other e< 1. Series expansion of the integrand in J, is possible by virtue of 
condition (1.9). Making use of this condition, we obtain 

J2 =-- 

./ 

eh 

s 
Tdh+... 

Ig 

To compute the integral J1 we first transform the expression 

( x 
,,R +Y$ 

C2 
2x 2x 

m = - 
pLLTXt 

g,xh"-'h -gxh,,), p = go+=-+ f + (1.10) 

where the constants g, and h, are the coefficients of the first terms of the asymptotic 

expansions of the functions 
2 

gzhX-1 (g,+g,S+.. 

2x 

.), h=ho+h$=+... (1.11) 

for small h. Making use of asymptotic expressions (1. 11). we can readily show that for 
large t, and 0 6 h Q e the quantity m< 1. 
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Bearing this inequality in mind, we find that in the first approximation 
L 

S 

*+1 1 - -- 
J1ygo ax-p x dh 

0 
Converting from integration over J. to integration over p in accordance with formula 

(1.10). we can compute the value of J1 in finite form. Retaining only the principal terms, 
we obtain ,a i Z(X;l) r-_1 Z(X;l) x--l 

J1=--- g;-910 X c 2 +12 2 y +... 

Now let us collect the above results and substitute them into Eq, (1.8). In the final 
analysis the behavior of the generatrix of the streamlined body contour as x -* CO is 
given by the expression .X-l 1-x x-1 2x-1 1 --_--- 

rb = 2 X go 2 hoZX c y zZX (1.12) 

In comparing formula(1.12) with the analogous formula of Yakura [12] it is convenient 
fo convert to dimensionless variables by dividing the coordinates by the radius r* of the 
shock front at its point of intersection with the axis of symmetry. From Eq. (1.1) defin- 

ing the form of the shock wave we obtain 

rJr* = VW* (C = 1/2r,) (1.13) 

Finally, recalling the equations 116, 171 

for the coefficients g, and ho , we can rewrite formula (1.12) as 
1 

(1.15) 

2. NOW let us turn to Yaliura’s paper 1121. Yakura found the shape of the body cor- 
responding to shock wave (1.13) by constructing the solution of the gas dynamics equa- 

tions by the well-developed method of combining exterior and interior asymptotic expan- 
sions (the principles of this method are presented in detail by Van Dyke 1181). He assumed 
that the exterior flow region was described by the solution of ihe intense-blast problem 

obtained by Sedov [13, 14-j and Taylor [15]; the interior expansion gaye him the velo- 
city field in the high-entropy layer adjacent to the streamlined body.Yakura also assumed 

that the perturbation theory Cl- 33 based on the hypothesis of plane cross sections by 
analogy with unsteady fiows is not directly applicable to the study of flows in high- 

entropy layers. 
We begin the analysis of the interior expansion formulas [l2] with the equation 

of the contour generatrix of the required body. It is easy to show with the aid of the 
second equation of (1.14) that the above expression is identical to Eq. (1.15). which 
follows from relation (2.1). Thus, the shape of the streamlined body corresponding to 
shock wave (1.13) as obtained by Yakura and Sychev turns out to be the same in the 
first approximation, even though the methods of investigating the problem which under- 
lie their studies are quite different. This explains the good qualitative agreement of the 
results obtained by direct computation of the integral appearing in (1.2) with the results 
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which follow from formula (2.1). The only disparity is due to the fact that the values 
of z/r, chosen in [lo, 121 were not too large. No deeper reasons for the disparity exist 

c193. 
Yakura’s interior expansion formulas 1121 make it possible to determine not only the 

contour of the streamlined body, but also the structure of the high-entropy layer adjacent 

to it. The independent variables in these expansions are the longitudinal coordinate z 
and the stream function p ; the transverse coordinate r is specified by way of the equa- 
tion 

+=(*), ($)+(Pa;Tr*% +i)%($ . (2.2) 

Here p, and no0 denote the density and velocity in the free stream. For Y = 0 rela- 

tion (2.2) implies (2.1). Making use of this equation, we can express the stream function 
in terms of x and r and then obtain explicit expressions for the transverse component 

-+ of the particle velocity, the pressure p, and the density p as functions of the cylindri- 
cal coordinates. Replacing the coefficient h,, by its expression as given in (1.14), we find 

on the basis of [12] that 

;: 

1 z-Ir 

( ) 

z 2 (X-1) -- - z -1 
-zx-- - - 

2x ,r, r, ’ 
p,pvm2 zz 2 2-X x *--x y- 

( ) (2.3) 

As regards the longitudinal component z’~ of the particle velocity, its deviation from 
the velocity of the free stream is 

R 7-X -- 
- - 

+Lfi_-_~x-l xx-1 (Xfi) 
x21 (2.4) 

co 
We can also write out the expression for the entropy, 

Pl(P,v,z) 

(P/P, I” 
= 2 (x - l)“(x + ‘)-(x+1)2y,(p,&*P) + 1 (2.5) 

which naturally depends on the stream function Y alone. The maximum value of the 
entropy corresponds to Y = 0, i. e. to compression of the gas at the normal shock wave. 

3. Now let us consider some relations from the intense-explosion theory developed by 
Sedov [13, 143 and Taylor [15]. We denote the time by t ; the quantity E is proportional 
to the energy released upon detonation of a filament charge of unit length. The coordi- 
nate of the shock wave is then given by 

(3.1) 

In using the analogy to calculate hypersonic flows the quantity E is identified with 
the constant F, proportional to the force ; the time t is related to the z-coordinate by 

the expression [4- 81 
t=x/um 

Its substitution into formula (3.1) yields 

(c,, = pm;~sr*z) 

(3.2) 

(3.3) 

In order for Eq. (3.3) to coincide with (1.13). we must set the drag coefficient C,, = 4. 
We assume from now on that this condition is fulfilled. Sedov [lS] showed that the fol- 
lowing asymptotic expansions are valid near the blast center : 
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1 --- 

() _L_L 
2(X-l) -&’ 

r-"& t' t F-l (3.4) 

The coefficients kl and k, in these expressions are related to the Poisson adiabatic coef- 

ficient in the following way: 

2 3x-4 x+1 4-x 2(X-l) 

kl = 2-(X--1)(2--x) x(X-1)(2-X) 
- --- 

(x - I)-'(% + l)+l, k2 = 2 '-'x 2--x 

Converting from the time t to the coordinate z in accordance with (3.2) in expan- 

sions (3.4) and recalling the two above expressions, we see that the indicated expansions 

coincide precisely with Yakura’s formulas (2.3). This coincidence implies the validity 

of the hypothesis of plane cross sections [l-3] in the case of the high-entropy layer adja- 

cent to the surface of the streamlined body. In fact, Yakura’s interior expansion [12] 

actually represents the asymptotic form of the solution of the intense-explosion problem 

for r -+ 0 ; it is this asymptotic form which he matched with the complete solution of 

the same problem. In other words, the analogy between unsteady flows and hypersonic 

flow past slender bodies can be used to compute the entire domain situated between the 

front of the shock wave and the surface of the body. 

We must now consider the shape of the body itself. As we have seen, its contour must 

be generated by the trajectory of one of the particles set in motion by the detonation 

wave. In order to see this let us make use of the solution of the blast problem in Lagrange 

variables as it appears in Sedov’s monograph [lS]. This solution is given in parametric 

form, the parameter be’ing the dimensionless velocity v = tv,/r. The axis of sym- 

metry of the flow corresponds to the value T/ = ‘l/(2 x). Let us denote by r,, the initial 

coordinate of the particle prior to the passage of the shock wave, and set 

It is easy to show that for small A the solution [lS] of the intense-explosion problem 

in Lagrange variables has the following asymptotic form : 
x-1 x+1 x-1 -- r -_~2x1~z(x_~) 2x @+l)-=A= 

r LI 
X-l 1 

-- _ 
r0 

-= 2 r 
2--xX2--n (% _ 1)f" A"' 

I 
Eliminating the parameter A and making use of expression (3.3) for the coordinate 

rs of the shock wave, we obtain 

4-x 2--x* - 

r 
-= 

2 2X(2-X) x2x(2--x) --(~+l,~~gycj~ 
(3.5) 

r* 
For r0 = r.+ formula (3. 5) coincides completely with (1.15), which implies that the 

contour of the streamlined body is formed by the trajectory of a particle propelled by 

the detonation wave. The resulting value of the coordinate r. is related to the appro- 

priate choice of the entropy along the trajectory (contour). In fact, in the intense-explo- 

sion problem [16] we have 
P -= 

PX 
-& - I)"(% + 1)-'"+"-$-;lc, (3.6) 

Converting to dimensionless variables, we obtain 
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P/&p,*) 
E 2 (x -_1)“(x + 1)-(x”) $_ 2 

f?/P,Y ( i (3.7) 

Let us compare the above value of the entropy with that given by formula (2.5) in 

which the streamlined body is associated with the value Y = 0. The two values turn 

out to be equal for rO = r*. Thus, direct application of explosion theory to the deter- 

mination of the streamlined body contour requires only the correct specification of the 

entropy at the particle trajectory which is its generatrix. This value of the entropy 

occurs with shock compression of the gas at the normal shock wave front in a hypersonic 
stream. It is the maximum permissible entropy, since the entropy beyond an oblique 

shock wave must be smaller. On the other hand, according to the solution of the intense- 

explosion problem the entropy in the particles can increase without limit with decreas- 
ing distance to the axis of symmetry. The maximum permissible entropy is 

f 

P / (P,JJm2) 

fP i P:,J” I = 2 (x -1)” (x + i)-@+*) 
max 

which agrees with relation (2. 5). This value defines that region of unsteady flow which 
can be used to compute the hypersonic stream. In the remaining part of the unsteady 
flow resulting from an intense explosion of a filament charge the entropy values in the 
particles exceed those attainable in a hypersonic steady stream. 

The streamlines near the body contour are normalized by the expression 

--1 

which follows from a comparison of formulas (2.5) and (3. ‘7). On fulfilment of condition 
(3. 8), Eq. (3. 5) for the trajectory of an arbitrary particle becomes expression (2.2) which 

occurs in Yakura’s interior expansion. 
Correction (2.4) for the longitudinal component of the velocity vector is equally easy 

to find on the basis of intense-explosion theory. To this end we need merely substitute 

formulas (3.4) reduced to the form (2.3) into the Bernoulli integral, 

According to small-perturbation theory a particle trajectory must be described by the 
solution of the ordinary differential equation 

-$ =Z’r(t, r)lr+e=-&-+ 

Integrating this equation, we obtain 
r=.3tk (3.9) 

In order to determine the arbitrary constant ~1, we substitute asymptotic expansions 
(3.4) for the pressure and density into the left side of Eq. (3.6). Allowance for relation 
(3.9) between the cylindrical coordinate and the time enables us to find A from the 

initial position r. of the particle. It is easy to show that on converting from t to x 
according to (3.2) we again obtain formula (3.5). Thus, the condition of entropy con- 

servation in a particle enables us to find the correct value of the constant in the asymp- 
totic expansion of its trajectory as t -_, 0~. 

4, Finally, let us consider the results of [ll], where Sychev again posed the problem 
of finding the shape of a body generating a shock wave of the form (1.1) and (1.13) in 



612 0. S. Ryzhov and E. D. Terent’ev 

a steady hypersonic stream.He solved the problem by the method of deformed Poincare- 

Lighthill-Ho coordinates described in [18]. His scale of reference for the cylindrical 
coordinates was the diameter d of the blunt nose of the body. Sychev wrote the expres- 
sion of the shock front in the form 

r,ld = x,C; (xfd)‘la 

This formula becomes identical to formula (1.13) if we set 

Xl’Cxs = c*r = 4 (4.1) 

The scale factor d then becomes identical to the radius of curvature r. of the shock 
wave at its point of intersection with the axis of symmetry of the stream. According to 

[ll]. the required contour equation can be written as 1 
x+1 1 2X-l 2x -- 

(x + 1) 2% @x2 -zwc4x 
x2 

where the constant xa can be expressed in terms of +and the coefficient IL,, introduced 

above by means of the formula hoX12 
xx= x+l 

Making use of this equation, we immediately obtain 

(4.2) 

Recalling Eq. (4.1) for the drag coefficient C,,, we see that relation (4.2) becomes 
(1.15) with d = r,. 

We therefore conclude that the methods ofasymptotic expansions and deformed coor- 
dinates as applied to the solution of the inverse problem of determining the shape of a 
body from the shock wave (1.13) which it generates, yield the same prescription: the 

results of intense-explosion theory can be applied without alteration to the entire region 
between the shock front and the body whose contour is formed by the trajectory of a 

particle with an entropy corresponding to compression of the gas at the normal shock 
wave in a steady hypersonic ilow. 

The authors are grateful to A. A. Dorodnitsyn and V. V. Sychev for their useful com- 

ments. 

BIBLIOGRAPHY 

1. Tsien, H, S., Similarity laws of hypersonic flows. J. Math. Phys. Vol. 25, Nn3.1946. 

2. Hayes, W. D., On hypersonic similitude. Quart. Appl. Math. , Vol. 5, fll. 1947. 

3. Il’iushin. A. A., The law of plane cross sections in the aerodynamics of high 

supersonic velocities. PMM Vol. 20, No6, 1956. 
4. Cheng, H. K. and Pallone, A. J., Inviscid leading-edge effect in hyper- 

sonic flow. J. Aeronaut. Sci. Vol. 23, Ns7, 1956. 

5. Lees.L. and Kubota, T., Inviscid hypersonic flow over blunt-nosed slender 

bodies. J. Aeronaut. Sci. Vol. 24, Nn3, 1957. 
6. Chernyi, G. G., The effect of slight blunting of the leading edge of a profile 

on high-supersonic flow past it. Dokl. Akad. Nauk SSSR Vol. 114, fl4, 1957. 
7. Chernyi. G. G,, Flow past a slender blunt cone at high supersonic velocities. 

Dokl. Akad. Nauk SSSR Vol. 115, Np4, 1957. 



Applying the explosion analogy to the calculation of hypersonic flows 613 

8. Chernyi, G. G, , The effect of slight blunting of the front end of a body on high- 
supersonic flow past it. Izv. Akad. Nauk SSSR, OTN. Np4, 1958. 

9. Cheng, H. K., Similitude of hypersonic real gas flows over slender bodies with 

blunted noses. J. Aeronaut. Sci. Vol. 26, Nn9, 1960. 

10. Sychev. V. V. , On the theory of of hypersonic gas flow with a power-law shock 

wave. PMM Vol.24, Np3, 1960. 

11. Sychev, V. V., on the small-perturbation method in problems of hypersonic 

flow past slender blunt bodies. PMTF NQ6, 1962. 

12. Yakura, J., The theory of entropy layers and nose bluntness in hypersonic flows. 

In collection: Hypersonic Flow Studies. Moscow, “Mir”. 1964. 

13. Sedov, L. I., Air motion in intense explosions. Dokl. Akad. Nauk SSSR Vol. 52. 

Nl, 1946. 

14. Sedov, L. I., Propagation of strong waves of discontinuity. PMM Vol. 10. fl2, 

1946. 

15. Taylor, G. I., The formation of a blast wave by a very intense explosion. II. 

The atomic explosion of 1945. Proc. Roy. Sot. Ser. A Vol. 201. Np1065, 1950. 

16. Sedov, L. I., Similarity and Dimensional Methods in Mechanics. Moscow, 

“Nauka”, 1967. 
17. Korobeinikov, V. P., Mel’nikova, N. S. and Riazanov, E. V., 

The theory of Point Explosions. Moscow, Fizmatgiz, 1961. 

18. Van Dyke, M., Perturbation Methods in Fluid Mechanics. Moscow, “Mir”. 1967. 

19. Hayes, W. D. and Probstein. R, F., Hypersonic Flow Theory. New York- 

London, Academic Press, 1966. 

DIFFRACTION OF A SHOCK WAVE ON A WEDQE 

MOVING AT SUPERSONIC SPEED 
PMM Vol. 33, Ng4, 1969, pp. 631-637 

K. A. BEZHANOV 
(Moscow) 

(Received March 28, 1969) 

Translated by A.Y. 

We investigate the differentiation of a shock wave of an arbitrary intensity on the upper 

surface of a wedge moving at supersonic speed under the assumption that the difference 
between the intensities of the shock wave and the attached shock as well as the differ- 

ence between the wedge angle a and the angle of incidence of the shock wave d are 

both small (Fig. 1). 

The case of a flow when a plane shock wave impinges on a wedge moving at super- 
sonic speed and diffraction is absent, was dealt with in fl]. In the present paper we obtain 

conditions under which a constant parameter flow is realized in the region AFK bounded 
by the impinging shock wave, the attached shock and the wedge wall. 

Diffraction of a shock wave of arbitrary intensity on a slender wedge moving at super- 
sonic speed was dealt with in f2]. Paper [S] was concerned with the diffraction of a weak 
wave on a slender wedge moving at hypersonic speed. In addition, diffraction of a weak 
wave on an arbitrary wedge moving at supersonic speed was the theme of a Candidate’s 


